Digital Charge Balance Controller with an Auxiliary Circuit for Superior Unloading Transient Performance of Buck Converters

Eric Meyer, Dong Wang, Liang Jia, Yan-Fei Liu
Department of Electrical & Computer Engineering
Queen’s University
Kingston, Ontario, Canada
eric.meyer@amd.com, dong.wang@queensu.ca, liang.jia@queensu.ca, yanfei.liu@queensu.ca

Abstract—In this paper, a digital charge balance controller is presented which is capable of controlling a Buck converter and an auxiliary circuit to achieve an excellent unloading transient response. The auxiliary circuit significantly reduces the voltage overshoot caused by an unloading transient while the digital charge balance controller reduces the settling time of the converter. The controller is capable of implementing load-line regulation and yields a smooth transition from one loading condition to another. Simulation and experimental verification is performed and demonstrates significant transient improvement over previously-proposed solutions.

I. INTRODUCTION

As the capabilities of high-performance digital devices continue to exponentially expand, the demand on the power electronics industry to supply such devices becomes increasingly complex. Load transients of digital devices are becoming larger while physical real-estate constraints are becoming tighter preventing the tried-and-true method of adding capacitors to improve the transient performance of Buck converters. Thus, extensive research has been conducted developing controllers which improve the transient performance of Buck converters to their physical limits.

In [1]-[11], controllers have been presented which utilize second-order sliding surfaces, pre-calculated switching time intervals or capacitor charge balance methodologies to reduce the voltage deviation and settling time of a Buck converter, undergoing a load transient, to its virtually optimal level.

However, it is demonstrated in [1]-[2] that for low duty cycle conversion applications (e.g. 12VDCÆ1.5VDC), the optimal voltage overshoot caused by a step-down load current transient may be more than 5 times as large as the corresponding voltage undershoot caused by a positive current step of equal magnitude, as illustrated in Figure 1. Therefore, to adhere to voltage specifications, capacitor selection must be based on the larger voltage overshoot condition.

Thus in [12]-[22], various auxiliary circuits for the Buck converter have been proposed to improve the transient performance of a converter undergoing high-to-low load current changes. Methods include temporarily inversing the converter’s input voltage, temporarily disconnecting the inductor from the load, or diverting a portion of the inductor current to the input of the Buck converter through a separate switching circuit.

For example, the unloading transient response is improved in [12] by utilizing the high-frequency switching auxiliary circuit (illustrated in Figure 2) which rapidly transfers current from the output of the Buck converter to its input.

Figure 1 Assymetrical transient response to positive/negative load current step change (charge balance controller response)

Figure 2 Implementaiton of high frequency auxiliary circuit
While such methods do improve the unloading transient performance of a Buck converter, there has been no attempt to simultaneously reduce the voltage overshoot and minimize the settling time through control methods such as those presented in [1]-[11]. As an example, Figure 3 shows a simulated comparison of the unloading transient response of the non-linear charge balance controller (presented in [1]-[2]), versus the auxiliary circuit and control method, presented in [12].

![Figure 3](image)

Figure 3 Charge Balance Control Response [1]-[2] vs. Auxiliary Circuit Response [20]

It is shown in Figure 3 that while the addition of the aforementioned auxiliary circuit significantly reduces the voltage overshoot caused by an unloading transient, the settling time of the charge balance controller is far superior.

Furthermore, previously-proposed methods do not address applications in which load-line regulation (a.k.a. adaptive voltage positioning AVP) is required.

In this paper, a digital charge balance controller is proposed which combines the auxiliary circuit, presented in [12] and illustrated in Figure 2, with the control methodology presented in [1]-[2] to yield a converter with superior unloading transient performance. The proposed method actively reduces the output voltage overshoot caused by an unloading transient while minimizing the settling time to virtually-optimal levels (an achievement not demonstrated in previous literature).

Since the detailed implementation of the auxiliary circuit is covered extensively in [12], this paper will focus primarily on the proposed modified charge balance control method.

II. CONCEPT OF OPERATION

The operation of the proposed method will be described without and with the use of load-line regulation.

A. Operation without Load-Line Regulation

Figure 4 illustrates the proposed controller’s reaction to a rapid unloading transient without load-line regulation.

The high-level operation can be described in 5 steps:

1. The converter is controlled by a linear voltage-mode control scheme during steady-state conditions.
2. Immediately following an unloading transient, the controller will set the Buck converter’s PWM signal low and the auxiliary circuit’s PWM signal high.
3. The controller will estimate the magnitude of the unloading transient \(\Delta L_0 \) and set the peak auxiliary current \(I_{aux,peak} \) to an appropriate level based on \(\Delta L_0 \). At this point, the auxiliary circuit will begin switching operation, transferring current from the Buck converter’s output to its input.
4. At the moment that the inductor current \(i_L \) first equals the new load current \(I_{o2} \) (at \(t_1 \)), the auxiliary circuit will be deactivated. However, the Buck converter’s PWM signal will continue to remain low.
5. The Buck converter’s PWM signal will be set high at \(t_2 \) causing the inductor current to increase toward \(I_{o2} \). \(t_2 \) should be such that the net capacitor charge is equal to zero at the exact moment that the inductor current equals the new load current for a second time. In other words, referring to Figure 4, \(A_{charge} = A_{discharge1} + A_{discharge2} \) when \(i_L = I_{o2} \) at \(t_2 \). This will ensure that the output voltage and the inductor current equal their respective steady-state values simultaneously at \(t_{load} \).

B. Operation with Load-Line Regulation

Two cases must be addressed when charge balance control, the auxiliary circuit and load-line regulation are employed.

1) Case #1 (\(V_o > V_{o2} \) when \(i_L = I_{o2} \))

Case #1 is illustrated in Figure 5.

As shown, after the moment that \(i_L \) first equals \(I_{o2} \) (at \(t_1 \)), additional charge must be removed from the capacitor such that the output voltage can decrease to its new steady-voltage \(V_{o2} \). Therefore, the PWM control signal will remain low until \(t_2 \). \(t_2 \) is such that the charge balance equation (1) is true.

\[
A_{charge} = A_{discharge1} + A_{discharge2} = \int_{t_1}^{t_2} (i_L - i_{aux} - i_o) \, dt - \int_{t_1}^{t_2} (i_o - i_{aux} - i_L) \, dt - \int_{t_1}^{t_2} (i_o - i_{aux}) \, dt = (i_{o1} - i_{o2}) \cdot R_{droop} \cdot C_o
\]

(1)
The auxiliary circuit will be de-activated when the inductor current equals the new load current (at \(t_{12} \)). At this point, the linear controller will retain control.

III. Mathematical Analysis of Charge Balance Controller with Auxiliary Circuit

This section will derive the charge balance equations necessary to implement digital charge balance control such that a Buck converter, with the proposed auxiliary circuit, will recover from an unloading transient with decreased settling time. The charge balance equations are presented without and with load-line regulation employed.

A. Without Load-Line Regulation

Referring to Figure 4, it is noted that there is one positive integral area of capacitor current \(A_{\text{charge}} \) and two negative integral areas of capacitor current \(A_{\text{discharge}1} \) and \(A_{\text{discharge}2} \). The capacitor charge area \(A_{\text{charge}} \) is derived in (3).

Mathematical Analysis of Charge Balance

Referring to Figure 4, it is shown that the auxiliary circuit ± is de-activated when the inductor current equals the new load current (at \(t_{12} \)). It is assumed that when the auxiliary circuit is de-activated, that the auxiliary current \(i_{aux} \) decreases to zero in negligible time. This is a fair assumption since the falling \(i_{aux} \) slew rate is much faster than the falling \(i_L \) slew rate.

For the charge balance equations, the ripple of the auxiliary current is neglected since the high frequency auxiliary switching causes the ripple’s effect to be neutralized.

With the above assumptions, \(A_{\text{discharge}1} \) is calculated in (4).

\[
A_{\text{discharge}1} = \int_{t_1}^{t_{12}} m_2 \, dt \, dt
\]

Through geometric observation and simplification, \(A_{\text{discharge}2} \) is expressed in (5).

\[
A_{\text{discharge}2} = \int_{t_{12}}^{t_{11}} \frac{m_1 \cdot m_2 + 2}{m_1} \, dt
\]

where \(m_1 \) is the rising slew rate of the inductor current \(i_L \) \(m_2 \) is the falling slew rate of the inductor current \(i_L \) \(m_2 \) is the falling slew rate of the inductor current \(i_L \) \(m_2 \) is the falling slew rate of the inductor current \(i_L \) \(m_2 \) is the falling slew rate of the inductor current \(i_L \) \(m_2 \) is the falling slew rate of the inductor current \(i_L \). In order to ensure that \(V_o \) and \(i_L \) equal their respective steady-state values simultaneously, the net capacitor charge over the transient period must equal zero, as expressed in (6).

\[
\int_{t_1}^{t_{12}} m_2 \, dt \, dt = \int_{t_{12}}^{t_{11}} \frac{m_1 \cdot m_2 + 2}{m_1} \, dt = 0
\]

By dividing both sides of (6) by the constant \(m_2 \) and substituting the known values for \(m_1 \) and \(m_2 \), multiplying both sides by \((V_o - V_o) \) and simplifying, equation (7) is created.

\[
(V_o - V_o) \cdot \int_{t_1}^{t_{12}} \, dt \, dt = (V_o - V_o) \cdot \int_{t_{11}}^{t_{12}} dt \, dt - V_o \cdot \int_{t_{12}}^{t_{11}} \, dt \, dt = 0
\]
Thus, by using (7), it is possible to determine the moment that the Buck converter’s PWM control signal should be set high (at \(t_2\)), by the use of two accumulators, connected in series. The waveforms of the double accumulator are shown in Figure 6. This methodology is similar to the double accumulator method presented in [2].

As shown, when the output of accumulator 2 returns to zero, \(t_2\) is determined and the Buck converter’s PWM signal is set high. This control strategy is suitable when load-line regulation is not employed; however, it must be modified when load-line regulation is employed.

B. With Load-Line Regulation

This subsection will be divided into Case #1 and Case #2, as previously described in Section II.

1) **Case #1** \((V_o > V_{o2} \text{ when } i_L = I_{o2})\)

The capacitor charge regions for Case #1 are illustrated in Figure 5. As shown, a time instant \(t_{mid}\) has been identified in Figure 5. \(t_{mid}\) will be used in the charge balance calculation and occurs when (8) is true.

\[
i_L - I_{o2} = \frac{1}{2} \cdot \Delta_{aux}\text{avg} \text{ when } t = t_{mid} \tag{8}
\]

As shown, \(t_{mid}\) bisects time instances \(t_1\) and \(t_2\). The use of \(t_{mid}\) will be discussed in this section. The method of detecting \(t_{mid}\) will be discussed in Section IV.

The charge balance equation can be obtained by modifying (7), as expressed in (8).

\[
(V_{in} - V_o) \cdot \left[\int_{t_1}^{t_2} dt \cdot \frac{t_2}{dt} - \int_{t_1}^{t_2} dt \cdot \frac{t_2}{dt} - V_{in} \right]
\]

\[
\int_{t_1}^{t_2} dt \cdot \frac{t_2}{dt} = (V_{in} - V_o) \cdot R_{drefresh} \cdot C_o \cdot \int_{t_1}^{t_2} dt \tag{9}
\]

The right side of equation (9) represents the required capacitor charge offset to implement load-line regulation. As expressed, the output of an additional accumulator (the load-line accumulator) is compared with the output of the double accumulator to determine \(t_2\).

Since \(t_{mid}\) bisects time instances \(t_1\) and \(t_2\) and the input of the load-line accumulator is a constant, the final value of the load-line accumulator is obtained at time instant \(t_{mid}\), as expressed in (10).

\[
\int_{t_1}^{t_2} dt = \int_{t_1}^{t_2} dt + \int_{t_{mid}}^{t_2} dt + \int_{t_{mid}}^{t_2} dt = \int_{t_1}^{t_2} dt + 2 \cdot \int_{t_{mid}}^{t_2} dt \tag{10}
\]

By substituting (10) into (9), the charge balance equation for load-line regulation (Case #1) is derived in (11).

\[
(V_{in} - V_o) \cdot \left[\int_{t_1}^{t_2} dt + \int_{t_{mid}}^{t_2} dt - \int_{t_1}^{t_2} dt - V_{in} \right] \cdot \int_{t_1}^{t_2} dt \cdot \frac{t_2}{dt} = (V_{in} - V_o) \cdot R_{drefresh} \cdot C_o \cdot \left(\int_{t_1}^{t_2} dt + 2 \cdot \int_{t_{mid}}^{t_2} dt \right) \tag{11}
\]

Thus, \(t_2\) can be determined by using the aforementioned double accumulator (left side of (11)) and comparing its output with the output of a single accumulator (right side of (11)).

2) **Case #2** \((V_o = V_{o2} \text{ before } i_L = I_{o2})\)

The capacitor charge regions for Case #2 are illustrated in Figure 6. It is shown that, for Case #2, the moment the auxiliary circuit is de-activated \(t_{aux_dis}\) occurs before \(t_{aux_avg}\), to allow charge area \(A_{charge2}\) to charge the output capacitor.

If the auxiliary circuit were de-activated at \(t_{mid}\), the capacitor current \((I_{aux_avg})\) would equal \(I_{aux_avg} = I_{aux_avg}\), which can also be expressed in terms of the falling inductor slew rate, as shown in (12).

\[
i_L(t_{mid}) - I_{o2} = \int_{t_1}^{t_{mid}} m_2 dt \tag{12}
\]

Following \(t_{mid}\), the charge area \(A_{charge2}\) begins to decrease as the inductor current approaches the new load current at a slew rate of \(m_2\). Thus, \(A_{charge2}\) is expressed in (13).

\[
A_{charge2} = \Delta_{discharge} - \left[\int_{t_{mid}}^{t_{aux_dis}} \left(i_L(t_{mid}) - I_{o2} - m_2 \cdot \int_{t_{mid}}^{t_{aux_dis}} dt \right) dt \right] \tag{13}
\]

By substituting (3),(4),(10),(13), into (2), the charge balance equation for Case #2 load line regulation is expressed in (14).

\[
\int_{t_1}^{t_2} m_2 dt \cdot \frac{t_2}{dt} - \int_{t_1}^{t_2} m_2 dt \cdot \frac{t_2}{dt} - \int_{t_{mid}}^{t_{aux_dis}} \left(i_L(t_{mid}) - I_{o2} - m_2 \cdot \int_{t_{mid}}^{t_{aux_dis}} dt \right) \cdot \frac{t_2}{dt} = R_{drefresh} \cdot C_o \cdot \left(\int_{t_1}^{t_2} m_2 dt + 2 \cdot \int_{t_{mid}}^{t_2} m_2 dt \right) \tag{14}
\]

By collecting like terms, (14) is simplified, as shown in (15).

\[
\int_{t_1}^{t_2} dt \cdot \frac{t_2}{dt} - \int_{t_1}^{t_{aux_dis}} \left(2 \cdot \int_{t_{mid}}^{t_{aux_dis}} dt \right) dt = R_{drefresh} \cdot C_o \cdot \left(\int_{t_1}^{t_2} m_2 dt + 2 \cdot \int_{t_{mid}}^{t_2} m_2 dt \right) \tag{15}
\]

By using (15), the output of a double accumulator (left side) can be compared to the output of a single accumulator (right side) to determine the moment to deactivate the auxiliary circuit \(t_{aux_dis}\).

In order to minimize the digital gate count of the controller, it is beneficial to design one double accumulator that can be used for Case #1, Case #2 and cases without load-line regulation. In order to achieve this, charge balance equation (15) can be modified by multiplying both sides by \((V_o-V_o)\), as expressed in (16).
\[(V_{in} - V_o) \cdot \int_{t_0}^{t_1} dt \cdot \left(2 \cdot \int_{t_1}^{t_{aux_dist}} + \int_{t_{aux_dist}}^{t_1} \right) dt = R_{droop} \cdot C_o \cdot (V_{in} - V_o) \cdot \left(\int_{t_0}^{t_2} dt + 2 \cdot \int_{t_1}^{t_2} dt \right) \]

(16)

By utilizing the combination of (11) and (16), one double accumulator can be used for all cases, as shown in Figure 8.

Figure 8 illustrates the load-line accumulator output for Case #2, Case #1 and no load-line (from top to bottom).

As shown, if the output of accumulator 2 decreases below that of the load-line accumulator before \(t_{aux_dist} \), Case #2 is detected and the auxiliary circuit is de-activated, at time \(t_{aux_dist} \).

If \(t_{aux_dist} \) occurs before the output of accumulator 2 decreases below the output of the load-line accumulator, the auxiliary circuit is de-activated at \(t_{aux_dist} \), as shown in Figure 4 and Figure 5.

In these cases, the Buck converter’s PWM signal will remain low until output of accumulator 2 decreases below the load-line accumulator’s output at time \(t_2 \).

Figure 8 Digital double for all possible cases

IV. DETAILED OPERATION AND IMPLEMENTATION OF CHARGE BALANCE CONTROLLER WITH AUXILIARY CIRCUIT

The high-level system diagram of the digital charge balance controller with auxiliary circuit for a synchronous Buck converter is illustrated in Figure 9.

This section summarizes the operation of the proposed charge balance controller with the auxiliary circuit. The operation of the controller can be summarized in eight steps.

Step 1 \((t=t_0)\)

The Buck converter is controlled by a digital linear controller during steady-state operation. Following an unloading transient, the output of the analog load transient detector (see Figure 9) will rapidly exceed the transient threshold.

Figure 9 System-level block diagram of digitally-implemented charge balance controller with auxiliary circuit

This will cause the controller to immediately enter transient mode. The linear controller will be frozen and the charge balance controller will take control of the converter.

The PWM signal of the Buck converter will be initially set low and the PWM signal of the auxiliary circuit will be initially set high.

As shown in Figure 8, the output of accumulator 1 will begin to increase linearly with a slope of \(k(V_{in}-V_o) \) and the output of accumulator 2 will begin to increase exponentially. If load-line regulation is required, the load-line accumulator will begin to increase linearly with a slope of \(k^2 R_{droop} C_o (V_{in}-V_o) \).

Step 2 \((t_{samp1} \leq t \leq t_{samp2})\)

As shown in Figure 4-Figure 6, two output voltage samples are acquired at \(t_{samp1} \) and \(t_{samp2} \) to estimate the load transient magnitude. Using this information and equation (17), an appropriate value of \(I_{aux_peak} \) is selected from an LUT. The digital value \(I_{aux_peak} \) is passed to the system’s DAC and the \(k \) cross-over predictor. At \(t_{samp2} \), the auxiliary circuit will begin high-frequency switching operation using a peak-current, constant off-time controller. The appropriate peak current is user defined based on the desired output voltage response.

\[\Delta I_o = C_o \cdot \frac{\Delta v_{aux_peak}}{T_{samp}} + \left[\frac{V_o}{I_{aux_peak}} \cdot \frac{1}{I_{aux_peak}} \cdot (t_{aux_peak} - \frac{1}{2} \cdot T_{samp} - t_o) \right] \cdot ESR \]

(17)

It is shown in Figure 9, that an analog comparator is used to detect the peak auxiliary current \(I_{aux_peak} \). The detection signal is used by the digital controller. The mixed-signal implementation is necessary due to the high slew rate of the auxiliary current.

Step 3 \((t=t_1)\)

The capacitor current crosses zero for the first time at \(t_1 \). In order to predict the time instances \(t_1 \), \(t_{mid} \) and \(t_{aux_dist} \), a capacitor current zero cross-over predictor is utilized. This method is introduced in [2]; however in the proposed method, the predictor is capable of compensating for the known average auxiliary current \(I_{aux_avg} \). The predictor acquires output voltage
samples (at a frequency equivalent to auxiliary circuit switching frequency f_{aux}) for a short period after t_0. From these samples, it is possible to calculate the derivative, estimate the capacitor current slope and magnitude allowing for the fine resolution prediction of t_{1s}, t_{mid} and t_{aux}, as shown in Figure 10.

![Figure 10](Image 78x371 to 169x479)

Referring to Figure 8, at t_1, accumulator 1 is reset to zero. The input of accumulator 1 is set to $-2 \cdot (V_{in} - V_o)$ and the enable input of accumulator 2 is set low. Thus, the output of accumulator 1 will begin to decrease at a rate of $2 \cdot k \cdot (V_{in} - V_o)$ and the output of accumulator 2 will remain constant.

The channel select of the ADC is set to the inductor current sensor at this point, and a sample of the inductor current is taken and passed to the linear controller. This will be used by the linear controller for load-line regulation.

Referring to Figure 8, the input of the load-line accumulator is switched to $2 \cdot k \cdot R_{drop} \cdot C_o \cdot (V_{in} - V_o)$ at t_1.

Step 4 ($t = t_{mid}$)

When the k zero cross-over predictor indicates $t = t_{mid}$, it is known that $i_o(t_{mid}) = 1/2 \cdot I_{aux _avg}$. Referring to Figure 8, at $t = t_{mid}$, the enable input of accumulator 1 is set low and the enable input of accumulator 2 is set high. Accumulator 2 is set to decrement mode causing its output to decrease at a linear rate equal to $k \cdot Acc1(t_{mid})$ (where $Acc1(t_{mid})$ equals the output of accumulator 1 at t_{mid}).

As shown in Figure 8, the enable input of the load-line accumulator is set low at t_{mid}, causing its input to remain constant following t_{mid}.

Step 5 ($t = t_{aux _dis}$) (Case #2 only)

As shown in Figure 8, if the output of accumulator 2 decreases below that of the load-line accumulator before the inductor current equals the new load current (at t_d) then Case #2 is detected. If this occurs, the auxiliary circuit is deactivated at this moment ($t = t_{aux _dis}$), as shown in Figure 6. The PWM signal of the Buck converter continues to be held low.

Step 6 ($t = t_d$)

When the inductor current equals the new load current for the first time, $t = t_d$.

If Case #2 was previously detected, this moment signifies the end of the load transient and the linear controller re-takes control of the Buck converter.

If Case #2 was not previously detected, accumulator 1 is cleared and its input is switched to $-V_o$. This causes accumulator 1’s output to decrease at a rate of $k \cdot V_o$ and the output of accumulator 2 to decrease at an exponential rate. As shown in Figure 4 and Figure 5, the auxiliary circuit is deactivated and the PWM control signal is held low following t_d.

Step 7 ($t = t_2$) (No Load-Line Regulation or Case #1)

When the output of accumulator 2 decreases below that of the load-line accumulator (at t_2), the PWM signal of the Buck converter is switched high and the inductor current begins to increase toward the new load current, as shown in Figure 4 and Figure 5.

Step 8 ($t = t_{aux}$)

When the inductor current equals the new load current for the first time (for Case #2) or the inductor current equals the new load current for a second time, it is determined that the transient is over. The second current cross-over is detected using a digital accumulator (accumulator 3), as introduced in [2]. The linear controller is unfrozen and retakes control of the Buck converter.

V. SIMULATION RESULTS

The following simulation was conducted under the ideal case, without considering timing delays, digital quantization effects, etc. The purpose of the simulation was to demonstrate the effectiveness of the charge balance controller with the auxiliary circuit over (1) a linear analog controller and (2) the charge balance controller alone.

The parameters of the simulated Buck converter were as follows: $V_o = 12V$, $V_{in} = 1.5V$, $f_{aux} = 400kHz$, $L_o = 1uH$, $C_o = 180uF$, $ESR = 0.5\mOmega$, $ESL = 100\mu H$. The auxiliary circuit parameters were: $L_{aux} = 100nH$, $f_{aux} = 2MHz$.

The transient response was simulated with load-line regulation. The output impedance R_{drop} was set to $5\mOmega$. Figure 11 illustrates a simulated comparison between a voltage-mode controlled converter, a digital charge balance controlled Buck converter (without auxiliary circuit) [2] and the proposed digital charge balance controller with auxiliary circuit. Each converter undergoes a 10A→0A load step transient.

It is illustrated that the voltage deviation magnitude and the settling time is improved significantly over previously-proposed solutions. The Buck converter with the proposed controller and auxiliary circuit has an output voltage overshoot of $18mV$ ($68mV$-$50mV$) over the new steady-state voltage ($68mV$ over the original steady-state voltage) and a settling time of $7us$.

Authorized licensed use limited to: Queens University. Downloaded on June 08, 2010 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.
VI. EXPERIMENTAL RESULTS

The proposed controller was implemented on an Altera Cyclone II FPGA. The Buck converter and auxiliary circuit parameters were identical to those of the simulation. Figure 12 illustrates the controller’s reaction to an 11.5A → 0A load step (without load line regulation). For this unloading magnitude, the auxiliary current was set to approximately \(I_{aux, avg} = 3.5A \). For reference, the time instants \(t_0 \) were super-imposed on the scope display to better illustrate the controller’s behavior.

As shown in Figure 13, the auxiliary circuit is de-activated when the inductor current first equals the new load current (at \(t_i \)). However, the Buck converter’s PWM signal is kept low until \(t_2 \) is determined. This is to allow additional charge to be removed from the output capacitor such that the output voltage equals the reference voltage at the exact moment that the inductor current equals its new steady-state value.

The converter is capable of recovering from the load transient within 9us with a voltage overshoot of 70mV.

Figure 13 illustrates the unloading transient response of the digital charge balance controller (introduced in [2]) without the use of the auxiliary circuit.

As observed, the use of the auxiliary circuit improves the settling time by 25% (12us → 9us) and improves the voltage overshoot by 56% (160mV → 70mV) over that of the digital charge balance controller alone.

Figure 14 illustrates the controller’s reaction to an 11.5A → 0A load step (with load line regulation). Figure 15 illustrates the inductor current (measured from the analog inductor current sensor).
As illustrated, Case #2 occurs and the auxiliary circuit is deactivated before I_L. The auxiliary current is deactivated at $I_{aux, dis}$ to allow the capacitor charge areas to appropriately balance by time I. This results in a smooth transition as the output voltage equals its new steady-state value at the exact moment that the inductor current equals the new load current. The converter is able to recover from the unloading step within 6us and with only a 10mV (70mV-60mV) overshoot beyond the final steady-state voltage.

VII. CONCLUSIONS

In this chapter a novel digital charge balance control method is described capable of reducing the voltage overshoot of a Buck converter (through the use of an auxiliary circuit) and implementing load line regulation. The proposed digital controller does not require multipliers, dividers or two-dimensional LUTs, significantly reducing the IC real-estate required.

The use of the auxiliary circuit significantly reduces the voltage overshoot (due to an unloading transient) beyond the physical capabilities of the Buck converter alone. It is shown that by implementing the charge balance principle with the auxiliary circuit, that the settling time can be also significantly improved over previously proposed solutions. In addition, it is demonstrated that the controller can be extended to applications which require load-line regulation.

REFERENCES