A High Efficiency Synchronous Buck VRM with Current Source Gate Driver

Wilson Eberle
Zhiliang Zhang
Dr. Yan-Fei Liu
Dr. P.C. Sen
Outline

1. Introduction
 1. Why you should use current source gate drive
 2. Drawbacks of existing voltage source and resonant based drivers

2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Introduction

• **Application:** low voltage high current
 voltage regulator modules

• **Trend to increase switching frequency for improvements in:**
 + *power density*
 + *dynamic performance*

Topology of Choice
Synchronous Buck
Drawbacks of Increased Switching Frequency with Conventional Drivers

Power MOSFET

- **Parasitics in blue**
- **Switching Loss**
- **Gate Loss**

Gate Loss Formula

\[P_{gate} = Q_g V_{GS} f_S \]

Switching Loss Formula

\[P_{switch} = \frac{1}{2} (t_{rise} + t_{fall}) V_{DS} I_{DS} f_S \]

Diagram

- **PWM**
- **MOSFET Driver**
- **Rext**
- **Qp**
- **QN**
- **VCC-VGS**
- **Charging Path**
- **Discharge Path**
- **VGS**
- **DS**
- **RG**
- **CGD**
- **CGS**

MOSFET, or BJT switches

[Diagram of MOSFET and switching waveforms]

www.queenspowergroup.com

www.queenspowergroup.com
Resonant Gate Drive Techniques

+ Many good (~10) circuits proposed since early 1990s, but generally unused

• LC resonant charging of the power MOSFET gate from zero initial current

• These circuits emphasize gate energy savings, but ignore, or can’t achieve potential switching loss savings
Resonant Gate Drive Review

Existing techniques suffer from at least one of five problems:

1. Circulating current conduction loss
2. Peak current dependent on duty cycle
Resonant Gate Drive Review

3. Large inductance, bulky transformer, or coupled inductor

4. Slow turn-on and/or turn-off

5. Gate not actively clamped high and/or low, so false triggering \((CdV/dt)\) can result
Conventional vs. Resonant Drive Switching Loss Savings

- Voltage source RC-type charging limits speed
- Constant current source type charging improves speed!

CURRENT SOURCE DRIVERS CAN REDUCE TURN-ON AND TURN-OFF LOSS!
Outline

1. Introduction

2. Proposed Driver and Operation

3. Driver Design Procedure

4. Driver Optimization in the VRM

5. Logic and Level Shift Circuits

6. Experimental Results

7. Conclusions
Proposed Driver

Resonant Gate Driver

for High Side (Q₁)

Synchronous Buck

for Low Side (Q₂)
Creating a Discontinuous Current Source

Independent control of high side (HS) MOSFET and SR

Key To Speed:
- Create discontinuous inductor current source, then
- Divert inductor pre-charge current to the gate
High Side MOSFET
Turn On Sequence

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR
High Side MOSFET Turn On Sequence

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR
High Side MOSFET
Turn On Sequence

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR
High Side MOSFET
Turn On Sequence

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR
High Side MOSFET Turn Off Sequence

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR
SR Operation

- Same procedure for SR
- Different time intervals due to larger gate charge
- Dictated by PWMQ₂ signal
Outline

1. Introduction
2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Driver Design

1. Set the turn on time, or average gate current
2. Set inductor pre-charge time
3. Calculate the inductor value

\[t_{on} = \frac{Q_g}{Ig_{avg}}, \quad Ig_{avg} = \frac{Q_g}{t_{on}} \]

\[t_{d1} \approx \frac{1}{2} t_{on} \]

\[L_1 = \frac{V_{cb} t_{on}}{Q_g} \left(\frac{t_{on}}{4} + t_{d1} \right) \]
Outline

1. Introduction
2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Optimizing HS Gate Current w.r.t. Driver Loss and Switching Loss

\[P_{optHS} \]

Total Switching + Driver Loss

\[\propto \frac{1}{I_{g_{avgHS}}} \]

Switching Loss

\[\propto I_{g_{avgHS}} \]

Total Driver Loss

\[P_{HS} \text{ [W]} \]

\[I_{g_{avgHS}} \text{ [A]} \]
Optimizing SR Gate Current w.r.t. Driver Loss and Body Diode Loss

\[P_{SR} [W] \]

\[I_{avgSR} [A] \]

- Total Switching + Driver Loss
- Total Driver Loss
- Body Diode Loss

\[P_{optSR} \]

\[\propto I_{avgQ1} \]

\[\propto \frac{1}{I_{avgQ1}} \]
Outline

1. Introduction
2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Logic Generation for Deadtime and S₁-S₄ Gating Signals

Fixed Deadtime Control Block

PWM
ED1
PWMR
T_{del1}
Q1R
Q2F
Q1F
Q2R
ED2
PWMF
T_{del4}
T_{del9}

Gating Signal Outputs

HS
MOSFET
SR

Digital Delay (T_{deln})

Counter

Clock
Update
Counter
Based

Signal
Edge
Rising

Signal
Rising
Edge

Logic Generation for Deadtime and S₁-S₄ Gating Signals

www.queenspowergroup.com
Level Shift Circuit

6 Switches (S₁-S₆) Require Level Shift Circuits
Outline

1. Introduction
2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Experimental Setup and Specs

- **Single Phase Apples to apples comparison**
- 6-layer, 2oz
- 12V Input
- 1.3V Output
- Up to 30A Load
- **1MHz**
- IRF6617 HS
- IRF6691 SR
- 330nH inductor: Vishay IHLP5050FD

Current Source Driver

S_1-S_8: NDS351AN, L_1: 68nH, L_2: 307nH
2.5ns fixed maximum deadtime

Conventional Driver

UCC27222, Predictive deadtime control

www.queenspowergroup.com
Waveforms

HS MOSFET and SR gate-source waveforms

HS MOSFET Driver Inductor Current Waveform
Efficiency vs. Load
1MHz, 12V input, 1.3V load, 10V Vcc

4%
Improvement!
Power Loss vs. Load
1MHz, 12V input, 1.3V load, 10V Vcc

Improvement Per Phase!
2.5W

Load Current [A]
0 1 2 3 4 5 6 7 8 9 10 11 12

Loss [W]
0 1 2 3 4 5 6 7 8 9 10 11 12

UCC27222 Vo=1.3V
Resonant Driver Vo=1.3V

1.79 2.62 3.76 5.42 7.87 11.07
1.66 2.20 2.99 4.24 6.09 8.58
Implications of Loss Savings

• 15W savings (2.5Wx6) in a 6 phase VRM, or
• 120A output, assuming loss limited to 9W per phase:
 • 5 phases required for conventional driver (27A max per phase; 120A/27A=5 phases)
 • 4 phases required for current source driver (30A max per phase; 120A/30A=4 phases)
• 1 phase eliminated: A SIGNIFICANT COST SAVINGS
Outline

1. Introduction
2. Proposed Driver and Operation
3. Driver Design Procedure
4. Driver Optimization in the VRM
5. Logic and Level Shift Circuits
6. Experimental Results
7. Conclusions
Summary of Advantages

• Current source drive to increase switching speed, decrease switching loss and decrease conduction loss
• SR gate energy recovery (~50%) or higher operating Vcc
• Small driver inductors:
 • HS MOSFET: <100nH compared to 1uH+ for other competitor current source gate driver
• Optimized independent control of HS and SR gate currents
• Potential driver integration with no additional pins for HS MOSFET and 1 additional pin for SR
Conclusions

• Novel current source gate driver for synchronous buck VRM proposed
• Driver operation, design, optimization, logic, level shift and experimental results presented
• Driver achieves 4% efficiency improvement and 2.5W savings over conventional at 1MHz
• Elimination of 1 phase at 1.3V/120A load
Acknowledgements

The authors would like to thank:

Ontario Centres of Excellence

C&D Technologies

Other interesting material available at:

www.queenspowergroup.com
Questions?