High Performance Digital Control Algorithms for DC-DC Converters Based on the Principle of Capacitor Charge Balance

Guang Feng
Eric Meyer*
Yan-Fei Liu

Queen’s University
Department of Electrical and Computer Engineering
Kingston, Ontario, Canada

*Presenting Author
Presentation Outline

- Introduction
- Concept of Capacitor Charge Balance
- Load Current Transient
- Input Voltage Transient
- Experimental Results
- Conclusion
1. Introduction

- VRMs must adhere to increasingly stringent dynamic performance criteria
- Alter topology (increase size of output capacitor)
 - Disadvantages:
 - Increased cost
 - Increased real-estate
 - Increase switching speed
 - Disadvantages:
 - Decrease efficiency
Controller Improvement

• Improve control method
 – Advantages:
 • Significantly less expensive than topology modification
 • Typically no effect on efficiency
Steady State vs. Transient

- Conventional controllers
 - Designed using frequency-domain small-signal model
 - Zero-steady state error
 - Widest bandwidth with sufficient phase margin
 - Model insufficient for large-signal time-domain transients
- Alternative controller
 - Separate control methods for steady and transient states
 - Well suited for digital implementation

9/3/2006
Advantages:

- Re-programmability
 - No hardware modification needed for altered topology
- Reliability
 - Tolerance and non-idealities of analog control components
- System Integration
 - Higher integration with digital circuits
- Simplicity
 - For controls requiring complicated arithmetic
Analog to Digital: New Implementation, Old Problems

Majority of research:
- Conventional analog designs copied
- Still suffers from slow compensation networks

Novel methods:
- Digital control simplifies complicated arithmetic
- Can be used to develop new non-linear control strategies

Digital Current Mode Controller
2. Capacitor Charge Balance

- Used extensively in steady-state analysis of DC-DC converters

\[v_c(T_s) - v_c(0) = \frac{1}{C} \cdot i_{c\text{avg}} = 0 \rightarrow \frac{1}{T_s} \int_0^{T_s} i_c(t) \, dt = 0 \]
Capacitor Charge Balance

- Extend principle to transient
 \[v_c(t_b) - v_c(t_a) = \frac{1}{C} \cdot i_{avg} = 0 \]
 \[\frac{1}{t_b - t_a} \int_{t_a}^{t_b} i_c(t) \, dt = 0 \]

- Voltage recovers to original value when net charge balanced

- Goal: Balance charges when inductor current reaches steady state value in shortest possible time
3. Load Current Transient

- **Point 0**: Load current step
- **Point 1**: Controller slowly increases duty
- **Point 2**: Inductor current equal load current
 - Inductor current > Load current
- **Point 3**: Output voltage recovered
- **Point 4**: Converter “recovered”

How can we improve this response?

Conventional Control Method
Load Current Transient Optimized

\[A_{\text{charge}} \]

\[A_{\text{discharge}} \]

Duty: 100% @ Point 1
Minimize \(A_{\text{discharge}} \)
Minimize \(\Delta V_o \)

Duty: 0% @ time
such \(A_{\text{discharge}} = A_{\text{charge}} \)
when \(i_L = i_o \)
Minimize settling time

\(V_{\text{ref}} \)

\(i_o \)

\(i_{L_end} \)

\(i_{L3} \)

0 1 2 3, 4
Minimize Transient Time

t_1 already minimized

minimize re-charge time by maximizing $i_{L_{\text{peak}}}$
Load Current Transient Algorithm

- Six key steps after sensing large signal transient condition:
 1. Estimate the new load current \(i_{o2} \)
 2. Calculate the inductor current rising and falling slew rates
 3. Calculate the capacitor discharge portion \(A_0 \)
 4. Calculate \(t_1 \) and the capacitor discharge portion \(A_1 \)
 5. Calculate \(t_4 \) and the capacitor discharge portion \(A_3 \)
 6. Calculate the capacitor charge portion \(A_2 \) and the time periods \(t_2 \) and \(t_3 \)
Estimate New Load Current & Estimate A_0

- i_{o2} and A_0 can be estimated by observing the output voltage response and knowing C and ESR

\[
i_{o2} = \frac{1}{2} (i_{L1} + i_{La}) - \frac{C \cdot (v_{0a} - v_{o1}) - C \cdot (i_{La} - i_{L1}) \cdot ESR}{t_{1a}}
\]

\[
A_0 = C \cdot (V_{ref} - v_{o1} + (i_{L1} - i_{o2}) \cdot ESR)
\]
Calculate A_1, A_3, t_1, t_3

- A_1, A_3, t_1, t_3 can be simply calculated geometrically by knowing the slew rates of the inductor current

$$t_1 = (i_{o2} - i_{L1}) / \left(\frac{v_{in} - v'_{o}}{L} \right)$$

$$A_1 = \frac{1}{2} * t_1 * (i_{o2} - i_{L1})$$

$$t_4 = (i_{o2} - i_{L_end}) / \left(\frac{L}{v'_{o}} \right)$$

$$A_3 = \frac{1}{2} * t_4 * (i_{o2} - i_{L_end})$$
\[A_{\text{discharge}} = A_{\text{charge}} \]
\[A_0 + A_1 + A_3 = A_2 \]

- Can now calculate \(A_2, t_2, t_3 \)
- The optimal path is calculated

\[t_2 = \sqrt{\frac{A_0 + A_1 + A_3}{\frac{v_{\text{in}}}{2} \cdot \frac{v_{\text{in}} - v_o}{L}}} \]
\[t_3 = \frac{v_{\text{in}} - v_o}{v_o} t_2 \]
Other Considerations

• The aforementioned derived equations are designed for a positive load current step
 – For a negative load current step, the derivation is similar
• Before completion, algorithm calculates the new steady state duty cycle d and inductor current i_L to be passed to the PID current-mode controller
 – Allows for a smooth transition
4. Input Voltage Transient

Digital Current-mode PID controller: Poor Audiosusceptibility

- Point 0: Input voltage change
- Point 1: Controller slowly decreases duty
- Point 2: Inductor current equal load current
- Point 3: Output voltage recovered
 - Inductor current < Load current
- Point 4: Converter “recovered”

How can we improve this response?

9/3/2006
Input Voltage Transient Optimized

- **Directly detect input voltage transient**
- **Calculate two duty cycles that will balance charges when inductor current reaches steady state value**
- **Minimizes voltage overshoot and settling time**
Why 2 cycles?

- **Not enough degrees of freedom in one cycle to:**
 - **Balance charges**
 - **Ensure inductor current = steady state value**
Input Voltage Transient Algorithm

- Charge Portion A_0 (Yellow T_0)
 - Net charge before algorithm activates
- Charge Portion A_1 (Pink T_1)
- Charge Portion A_2 (Cyan T_2)

Goal of Algorithm:
Ensure inductor current at steady-state value at Point 3

$A_0 + A_1 + A_2 = 0$ at Point 3
Input Voltage Transient Algorithm

- i_{L_end} known

Relationship between i_{L1}, i_{L_end}, d_1 and d_2

\[
i_{L_end} - i_{L1} = (d_1v_{in1} - v_o') \frac{T_s}{L} + (d_2v_{in1} - v_o') \frac{T_s}{L}
\]

\[
(i_{L_end} - i_{L1}) \cdot \frac{L}{T_s} + 2 \cdot v_o'
\]

\[
k = d_1 + d_2 = \frac{T_s}{v_{in1}}
\]
As before, A_0 is estimated by observing the variation of output voltage from Point 0 to Point 1

$$A_0 = C \cdot (v_{C1} - v_{C0}) \approx C \cdot (v_{C1} - V_{ref})$$

$$= C \cdot (v_{o1} - i_{C1} \cdot ESR - V_{ref})$$

$$= C \cdot (v_{o1} - (i_{L1} - i_o) \cdot ESR - V_{ref})$$
A_1 and A_2

\[
A_1 = \frac{1}{2} d_1 T_s \cdot [(i_{L1} - i_{L2}) + (i_{\text{peak}1} - i_{L2})] + \frac{1}{2} (1 - d_1) T_s \cdot (i_{\text{peak}1} - i_{L2}) - (i_o - i_{L2}) T_s
\]

\[
A_2 = \frac{1}{2} d_2 T_s \cdot (i_{\text{peak}2} - i_{L2}) + \frac{1}{2} (1 - d_2) T_s \cdot [(i_{\text{peak}2} - i_{L2}) + (i_{L_{\text{end}}} - i_{L2})] - (i_o - i_{L2}) T_s
\]
Duty Cycles

\[d_1 = \frac{1}{2} \left[(1+k) - \sqrt{(1+k)^2 + \frac{4L}{\nu_{in1} \cdot T_s} (i_{L1} - 2i_{o} + i_{L_end} - \frac{1}{2} k^2 \nu_{in1} \frac{T_s}{L} + \frac{A_{charge0}}{T_s})} \right] \]

\[d_2 = k - d_1 \]

Positive \(\Delta \nu_{in} \)

Negative \(\Delta \nu_{in} \)

9/3/2006
Other Considerations

• The aforementioned derived equations are designed for a positive load current step
 – For a negative load current step, the derivation is similar
• Before completion, algorithm calculates the new steady state duty cycle \(d \) to be passed to the PID current-mode controller
 – Allows for a smooth transition
• “Slow” input voltage variations
5. Experimental Results

- **Prototype:**
 - $L = 1\mu H$
 - $C = 235\mu F$
 - $ESR = 1m\Omega$
 - $R_L = 2m\Omega$
 - $f_s = 400kHz$

- **Current-mode PID controller:**
 - $f_o = 70\ kHz$
 - Phase margin: 50°

![Diagram of experimental setup]
Load Current Step Response

- $V_{in} = 5V$, $V_{out} = 2.5V$
- Load Current: 5A \rightarrow 10A
- X-axis: 40us/div
- Y-axis: 50mV/div
- Undershoot: 35% reduction
- Settling Time: 89% reduction

PID

Optimal

9/3/2006
Load Current Step Response

- $V_{in} = 5V, V_{out} = 2.5V$
- Load Current: 10A \rightarrow 5A
- X-axis: 40us/div
- Y-axis: 50mV/div
- Overshoot: 54% reduction
- Settling time: 91% reduction
Input Voltage Step Response

- Load Current = 5A
- Input Voltage: 5V → 7.5V
- X-axis: 40us/div
- Y-axis: 50mV/div
- Overshoot: 75% reduction
- Settling time: 83% reduction

PID Optimal
Input Voltage Step Response

- Load Current = 5A
- Input Voltage: 7.5V → 5V
- X-axis: 40us/div
- Y-axis: 50mV/div
- Undershoot: 68% reduction
- Settling time: 83% reduction

PID

Optimal

9/3/2006
Tolerance Sensitivity

\[C = -20\% \]
\[I_o = 10A \rightarrow 5A \]

\[L = -20\% \]
\[I_o = 10A \rightarrow 5A \]

\[C = -20\% \]
\[V_{in} = 7.5V \rightarrow 5V \]

\[L = -20\% \]
\[V_{in} = 7.5V \rightarrow 5V \]
6. Conclusion

• By focusing on balancing capacitor charges during transient periods, dynamic response can be optimized.
• Experimental results show substantial improvement over conventional methods.
• Low sensitivity to parameter tolerance.
Thank you for Attending
For more information, visit:
www.QueensPowerGroup.com