A New Resonant Gate Drive Circuit with Center-Tapped Transformer

Presented By: Wilson Eberle
Authors: Wilson Eberle
 P.C. Sen
 Yan-Fei Liu
1. Introduction

2. Proposed Resonant Gate Drive Circuit

3. Analysis and Design Guidelines

4. Experimental Results

5. Conclusions
1. Introduction

• Increased demand for higher switching frequencies:
 – Size reduction
 – Fast loop response
• BUT, Gate loss increases with frequency!
• Drawbacks of conventional gate drivers:
 – Gate charge completely lost
 – Driver overheating
 – Slow RC discharge turn-off: SWITCHING LOSS
Presentation Overview

1. Introduction

2. *Proposed Resonant Gate Drive Circuit*

3. Analysis and Design Guidelines

4. Experimental Results

5. Conclusions
2. Proposed Resonant Gate Drive Circuit
Operating Principles

Before t_1:

1. S_1 and S_3 on
2. M_1 off, M_2 on
3. Gate voltage of M_2 at twice of V_{cc}
t1 ~ t2:
1. S3 turned off at t1
2. Magnetizing current discharges Cg of M2
3. M2 turned off
4. S2 is turned on at ZVS
t2 ~ t3:

1. At t2, S1 turned off
2. Magnetizing current charges Cg of M1
3. Vg of M1 is charged to twice of Vcc
4. Body diode of S3 conducts current
Operating Principles

After t3:

1. At t3, S3 turned on at ZVS
2. M1 on, M2 off
3. Gate voltage of M1 at twice of Vcc
Advantages

• Current source to charge and discharge the gate capacitance
 – **Switching loss can be reduced!**

• $V_{gs} = 2V_{cc}$
 – Conduction loss is reduced
 – Logic level source for V_{cc}

• Drives a pair of MOSFETs
1. Introduction
2. Proposed Resonant Gate Drive Circuit
3. Analysis and Design Guidelines
4. Experimental Results
5. Conclusions
3. Analysis and Design Guidelines

Resonant Gate Driver Loss Components

\[P_{gr} = P_{rms} + P_{drive} + P_{core} \]

1. **Conduction loss – main contributor**
2. **Control switch driving loss – small share**
 - Select low gate charge control switches while conscious of \(R_{ds} \) conduction loss
 - **ZVS for control switches**
3. **Core loss – small share**
Conduction Loss Analysis

Conduction loss calculation:

\[P_{\text{rms}} = I_{\text{ss_rms}}^2 \cdot (2R_{\text{ds_on}} + R_L) + 2 \cdot I_{\text{t_rms}}^2 \cdot (R_g + 2R_L + R_{\text{ds_on}}) \]

\[I_{\text{ss_rms}} = \frac{I_{pk}}{\sqrt{3}} \]

\[I_{\text{t_rms}} = \frac{I_{pk}}{2} \cdot \sqrt{\frac{T_t}{T_s}} \]

Relationship between driving speed and driving current:

\[I_{pk} = \frac{4 \cdot V_{CC} \cdot C_g}{T_t} \]
• Center tapped transformer
• Bifilar wire winding construction to minimize leakage inductance impact
1. Introduction
2. Proposed Resonant Gate Drive Circuit
3. Analysis and Design Guidelines
4. Experimental Results
5. Conclusions
Experimental Results:
$V_{cc}=5V$, 1MHz, $L_m=900nH$, 2-FDS4410

Recovery:
- 48% loss saving
 - 2-FDS4410 paralleled
- 64% loss saving
 - $R_g=0.22\Omega$, $C_g=3.9nF$
1. Introduction
2. Proposed Resonant Gate Drive Circuit
3. Analysis and Design Guidelines
4. Experimental Results
5. Conclusions
5. Conclusions

• A new resonant gate drive circuit was introduced
• Circuit drives a pair of MOSFETs
• Driving voltage is twice Vcc
• Approximately 50% gate energy recovery